
Public Key Encryption and Digital Signatures 



Review of Secret Key (Symmetric) 
Cryptography  

• Confidentiality 
– stream ciphers (uses PRNG) 
– block ciphers with encryption modes 

• Integrity 
– Cryptographic hash functions 
– Message authentication code (keyed hash functions) 

• Limitation: sender and receiver must share the 
same key 
– Needs secure channel for key distribution 
– Impossible for two parties having no prior relationship 
– Needs many keys for n parties to communicate 



Public Key Encryption Overview 
• Each party has a PAIR (K, K-1) of keys:  

– K is the public key, and used for encryption 

– K-1 is the private key, and used for decryption 

– Satisfies    DK-1[EK[M]] = M 

• Knowing the public-key K, it is computationally infeasible to 
compute the private key K-1 
– How to check (K,K-1) is a pair? 

– Offers only computational security.  PK Encryption impossible when 
P=NP, as deriving K-1 from K is in NP. 

• The public-key K may be made publicly available, e.g., in a 
publicly available directory 
– Many can encrypt, only one can decrypt 

• Public-key systems aka asymmetric crypto systems 



Public Key Cryptography Early History 

• The concept is proposed in Diffie and Hellman 
(1976) “New Directions in Cryptography” 
– public-key encryption schemes 
– public key distribution systems 

• Diffie-Hellman key agreement protocol 

– digital signature 

• Public-key encryption was proposed in 1970 by 
James Ellis 
– in a classified paper made public in 1997 by the British 

Governmental Communications Headquarters 

• Concept of digital signature is still originally due to 
Diffie & Hellman 



Public Key Encryption Algorithms 

• Almost all public-key encryption algorithms use 
either number theory and modular arithmetic, or 
elliptic curves 

• RSA 

– based on the hardness of factoring large numbers 

• El Gamal 

– Based on the hardness of solving discrete logarithm 

– Basic idea: public key gx, private key x, to encrypt: 
 [gy, gxy M]. 



RSA Algorithm 
• Invented in 1978 by Ron Rivest, Adi Shamir 

and Leonard Adleman 
– Published as R L Rivest, A Shamir, L Adleman, "On 

Digital Signatures and Public Key Cryptosystems", 
Communications of the ACM, vol 21 no 2, pp120-
126, Feb 1978  

• Security relies on the difficulty of factoring 
large composite numbers  

• Essentially the same algorithm was discovered 
in 1973 by Clifford Cocks, who works for the 
British intelligence 



RSA Public Key Crypto System 
Key generation: 
1. Select 2 large prime numbers of about the same 

size, p and q 
Typically each p, q has between 512 and 2048 bits 

2. Compute n = pq, and (n) = (q-1)(p-1) 
3. Select e,  1<e< (n), s.t. gcd(e, (n)) = 1 

Typically e=3 or e=65537 

4. Compute  d, 1< d< (n) s.t.  ed  1 mod (n) 
Knowing (n), d easy to compute.  

 
Public key:  (e, n) 
Private key:  d 



RSA Description (cont.)  

Encryption 
Given a message M, 0 < M < n M  Zn {0} 
use public key (e, n)  
compute C = Me mod n    C  Zn {0} 
 
Decryption 
Given a ciphertext C, use private key (d)  
Compute Cd mod n = (Me mod n)d mod n = 

Med mod n = M 



Plaintext: M 

C = Me mod (n=pq) 

Ciphertext: C 

Cd mod n 

From n, difficult to figure out p,q 

From (n,e), difficult to figure d. 

From (n,e) and C, difficult to figure out M s.t. C = Me  



RSA Example 

• p = 11, q = 7, n = 77, (n) = 60  

• d = 13, e = 37   (ed = 481;  ed mod 60 = 1) 

• Let M = 15.  Then C  Me mod n 

– C  1537 (mod 77) = 71 

• M  Cd mod n 

– M  7113 (mod 77) = 15 

 

 



RSA Example 2 

• Parameters: 

– p = 3, q = 5, q= pq = 15 

– (n) = ? 

• Let e = 3, what is d? 

• Given M=2, what is C? 

• How to decrypt? 

 



RSA Security 
• Security depends on the difficulty of factoring n 

– Factor n => (n) => compute d from (e, (n)) 

• The length of n=pq reflects the strength 
– 700-bit n factored in 2007 

– 768 bit factored in 2009 

• 1024 bit for minimal level of security today 
– likely to be breakable in near future 

• Minimal 2048 bits recommended for current usage  

• NIST suggests 15360-bit RSA keys are equivalent in strength to 
256-bit  

• RSA speed is quadratic in key length 



Real World Usage of Public Key 
Encryption 

• Often used to encrypt a symmetric key 
– To encrypt a message M under a public key (n,e), generate a new AES 

key K, compute  [RSA(n,e,K), AES(K,M)] 

• Plain RSA does not satisfy IND requirement. 
– How to break it? 

• One often needs padding, e.g., Optimal Asymmetric 
Encryption Padding (OAEP) 
– Roughly, to encrypt M, chooses random r, encode M as   

 M’ = [X = M  H1(r)  , Y= r  H2(X) ]   where H1 and 
H2 are cryptographic hash functions, then encrypt it as (M’) e mod n 
   

– Note that given M’=[X,Y],  r = Y  H2(X), and M = X  H1(r)  



Digital Signatures: The Problem 

• Consider the real-life example where a person pays by credit 
card and signs a bill; the seller verifies that the signature on 
the bill is the same with the signature on the card 

• Contracts, they are valid if they are signed. 

• Signatures provide non-repudiation. 
– ensuring that a party in a dispute cannot repudiate, or refute the 

validity of a statement or contract. 

• Can we have a similar service in the electronic world?  
– Does Message Authentication Code provide non-repudiation?  Why? 



Digital Signatures 

• MAC: One party generates MAC, one party verifies integrity. 

• Digital signatures: One party generates signature, many 
parties can verify. 

• Digital Signature: a data string which associates a message 
with some originating entity. 

• Digital Signature Scheme: 
– a signing algorithm: takes a message and a (private) signing key, 

outputs a signature 

– a verification algorithm: takes a (public) key verification key, a 
message, and a signature 

• Provides: 
– Authentication, Data integrity, Non-Repudiation 



Digital Signatures and Hash  

• Very often digital signatures are used 
with hash functions, hash of a message is 
signed, instead of the message. 

• Hash function must be: 
– Pre-image resistant 

– Weak collision resistant 

– Strong collision resistant  



RSA Signatures 

Key generation (as in RSA encryption): 

• Select 2 large prime numbers of about the  

    same size, p and q 

• Compute n = pq, and  = (q - 1)(p - 1) 

• Select a random integer e,  1 < e < , s.t.  

    gcd(e, ) = 1 

• Compute  d, 1 <  d <   s.t.  ed  1 mod  

 

Public key:  (e, n)  used for verification 

Secret key:  d,   used for generation 



RSA Signatures (cont.)  
Signing message M 

• Verify 0 < M < n 

• Compute S = Md mod n 

 

Verifying signature S 

• Use public key (e, n)  

• Compute Se mod n = (Md mod n)e mod n = M 

 

Note: in practice, a hash of the message is signed 

and not the message itself. 


