Public Key Encryption and Digital Signatures

Review of Secret Key (Symmetric) Cryptography

- Confidentiality
 - stream ciphers (uses PRNG)
 - block ciphers with encryption modes
- Integrity
 - Cryptographic hash functions
 - Message authentication code (keyed hash functions)
- Limitation: sender and receiver must share the same key
 - Needs secure channel for key distribution
 - Impossible for two parties having no prior relationship
 - Needs many keys for n parties to communicate

Public Key Encryption Overview

- Each party has a PAIR (K, K⁻¹) of keys:
 - K is the **public** key, and used for encryption
 - K⁻¹ is the **private** key, and used for decryption
 - Satisfies $\mathbf{D}_{K^{-1}}[\mathbf{E}_{K}[M]] = M$
- Knowing the public-key K, it is computationally infeasible to compute the private key K⁻¹
 - How to check (K, K^{-1}) is a pair?
 - Offers only computational security. PK Encryption impossible when P=NP, as deriving K⁻¹ from K is in NP.
- The public-key K may be made publicly available, e.g., in a publicly available directory
 - Many can encrypt, only one can decrypt
- Public-key systems aka *asymmetric* crypto systems

Public Key Cryptography Early History

- The concept is proposed in Diffie and Hellman (1976) "New Directions in Cryptography"
 - public-key encryption schemes
 - public key distribution systems
 - Diffie-Hellman key agreement protocol
 - digital signature
- Public-key encryption was proposed in 1970 by James Ellis
 - in a classified paper made public in 1997 by the British Governmental Communications Headquarters
- Concept of digital signature is still originally due to Diffie & Hellman

Public Key Encryption Algorithms

- Almost all public-key encryption algorithms use either number theory and modular arithmetic, or elliptic curves
- RSA
 - based on the hardness of factoring large numbers
- El Gamal
 - Based on the hardness of solving discrete logarithm
 - Basic idea: public key g^x, private key x, to encrypt:
 [g^y, g^{xy} M].

RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman
 - Published as R L Rivest, A Shamir, L Adleman, "On Digital Signatures and Public Key Cryptosystems", Communications of the ACM, vol 21 no 2, pp120-126, Feb 1978
- Security relies on the difficulty of factoring large composite numbers
- Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence

RSA Public Key Crypto System

Key generation:

1. Select 2 large prime numbers of about the same size, p and q

Typically each p, q has between 512 and 2048 bits

- 2. Compute n = pq, and $\Phi(n) = (q-1)(p-1)$
- 3. Select e, $1 \le \Phi(n)$, s.t. $gcd(e, \Phi(n)) = 1$ Typically e=3 or e=65537
- 4. Compute d, 1< d< $\Phi(n)$ s.t. ed = 1 mod $\Phi(n)$ Knowing $\Phi(n)$, d easy to compute.

Public key: (e, n) Private key: d

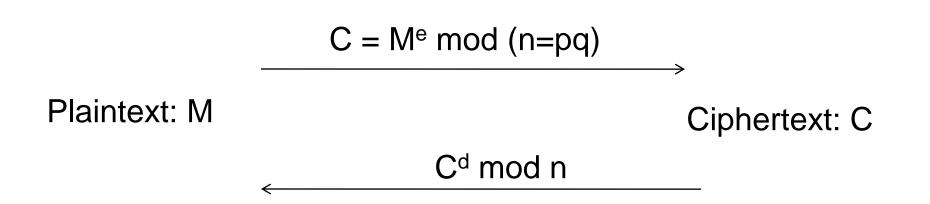
RSA Description (cont.)

Encryption

 $\begin{array}{ll} \mbox{Given a message M, 0 < M < n } & M \in Z_n - \{0\} \\ \mbox{use public key (e, n)} \\ \mbox{compute C = } M^e \mbox{ mod n } & C \in Z_n - \{0\} \end{array}$

Decryption

Given a ciphertext C, use private key (d) Compute C^d mod n = (M^e mod n)^d mod n = M^{ed} mod n = M



From n, difficult to figure out p,q

From (n,e), difficult to figure d.

From (n,e) and C, difficult to figure out M s.t. $C = M^e$

RSA Example

- p = 11, q = 7, n = 77, Φ(n) = 60
- d = 13, e = 37 (ed = 481; ed mod 60 = 1)
- Let M = 15. Then $C \equiv M^e \mod n$

 $-C \equiv 15^{37} \pmod{77} = 71$

• $M \equiv C^d \mod n$

$$-M \equiv 71^{13} \pmod{77} = 15$$

RSA Example 2

• Parameters:

- Let e = 3, what is d?
- Given M=2, what is C?
- How to decrypt?

RSA Security

- Security depends on the difficulty of factoring n
 - Factor n => $\Phi(n)$ => compute d from (e, $\Phi(n)$)
- The length of n=pq reflects the strength
 - 700-bit n factored in 2007
 - 768 bit factored in 2009
- 1024 bit for minimal level of security today
 - likely to be breakable in near future
- Minimal 2048 bits recommended for current usage
- NIST suggests 15360-bit RSA keys are equivalent in strength to 256-bit
- RSA speed is quadratic in key length

Real World Usage of Public Key Encryption

- Often used to encrypt a symmetric key
 - To encrypt a message M under a public key (n,e), generate a new AES key K, compute [RSA(n,e,K), AES(K,M)]
- Plain RSA does not satisfy IND requirement.

- How to break it?

- One often needs padding, e.g., Optimal Asymmetric Encryption Padding (OAEP)
 - Roughly, to encrypt M, chooses random r, encode M as $M' = [X = M \oplus H_1(r) , Y = r \oplus H_2(X)] \qquad \text{where } H_1 \text{ and}$ $H_2 \text{ are cryptographic hash functions, then encrypt it as (M') e mod n}$
 - Note that given M'=[X,Y], $r = Y \oplus H_2(X)$, and M = X $\oplus H_1(r)$

Digital Signatures: The Problem

- Consider the real-life example where a person pays by credit card and signs a bill; the seller verifies that the signature on the bill is the same with the signature on the card
- Contracts, they are valid if they are signed.
- Signatures provide non-repudiation.
 - ensuring that a party in a dispute cannot repudiate, or refute the validity of a statement or contract.
- Can we have a similar service in the electronic world?
 - Does Message Authentication Code provide non-repudiation? Why?

Digital Signatures

- MAC: One party generates MAC, one party verifies integrity.
- Digital signatures: One party generates signature, many parties can verify.
- Digital Signature: a data string which associates a message with some originating entity.
- Digital Signature Scheme:
 - a signing algorithm: takes a message and a (private) signing key, outputs a signature
 - a verification algorithm: takes a (public) key verification key, a message, and a signature
- Provides:
 - Authentication, Data integrity, Non-Repudiation

Digital Signatures and Hash

- Very often digital signatures are used with hash functions, hash of a message is signed, instead of the message.
- Hash function must be:
 - Pre-image resistant
 - Weak collision resistant
 - Strong collision resistant



RSA Signatures

Key generation (as in RSA encryption):

- Select 2 large prime numbers of about the same size, p and q
- Compute n = pq, and Φ = (q 1)(p 1)
- Select a random integer e, 1 < e < Φ, s.t. gcd(e, Φ) = 1
- Compute d, 1 < d < Φ s.t. ed = 1 mod Φ

Public key: (e, n)used for verificationSecret key: d,used for generation

RSA Signatures (cont.)

Signing message M

- Verify 0 < M < n
- Compute S = M^d mod n

Verifying signature S

- Use public key (e, n)
- Compute S^e mod n = (M^d mod n)^e mod n = M

Note: in practice, a hash of the message is signed and not the message itself.