
Public Key Encryption and Digital Signatures

Review of Secret Key (Symmetric)
Cryptography

• Confidentiality
– stream ciphers (uses PRNG)
– block ciphers with encryption modes

• Integrity
– Cryptographic hash functions
– Message authentication code (keyed hash functions)

• Limitation: sender and receiver must share the
same key
– Needs secure channel for key distribution
– Impossible for two parties having no prior relationship
– Needs many keys for n parties to communicate

Public Key Encryption Overview
• Each party has a PAIR (K, K-1) of keys:

– K is the public key, and used for encryption

– K-1 is the private key, and used for decryption

– Satisfies DK-1[EK[M]] = M

• Knowing the public-key K, it is computationally infeasible to
compute the private key K-1
– How to check (K,K-1) is a pair?

– Offers only computational security. PK Encryption impossible when
P=NP, as deriving K-1 from K is in NP.

• The public-key K may be made publicly available, e.g., in a
publicly available directory
– Many can encrypt, only one can decrypt

• Public-key systems aka asymmetric crypto systems

Public Key Cryptography Early History

• The concept is proposed in Diffie and Hellman
(1976) “New Directions in Cryptography”
– public-key encryption schemes
– public key distribution systems

• Diffie-Hellman key agreement protocol

– digital signature

• Public-key encryption was proposed in 1970 by
James Ellis
– in a classified paper made public in 1997 by the British

Governmental Communications Headquarters

• Concept of digital signature is still originally due to
Diffie & Hellman

Public Key Encryption Algorithms

• Almost all public-key encryption algorithms use
either number theory and modular arithmetic, or
elliptic curves

• RSA

– based on the hardness of factoring large numbers

• El Gamal

– Based on the hardness of solving discrete logarithm

– Basic idea: public key gx, private key x, to encrypt:
 [gy, gxy M].

RSA Algorithm
• Invented in 1978 by Ron Rivest, Adi Shamir

and Leonard Adleman
– Published as R L Rivest, A Shamir, L Adleman, "On

Digital Signatures and Public Key Cryptosystems",
Communications of the ACM, vol 21 no 2, pp120-
126, Feb 1978

• Security relies on the difficulty of factoring
large composite numbers

• Essentially the same algorithm was discovered
in 1973 by Clifford Cocks, who works for the
British intelligence

RSA Public Key Crypto System
Key generation:
1. Select 2 large prime numbers of about the same

size, p and q
Typically each p, q has between 512 and 2048 bits

2. Compute n = pq, and (n) = (q-1)(p-1)
3. Select e, 1<e< (n), s.t. gcd(e, (n)) = 1

Typically e=3 or e=65537

4. Compute d, 1< d< (n) s.t. ed 1 mod (n)
Knowing (n), d easy to compute.

Public key: (e, n)
Private key: d

RSA Description (cont.)

Encryption
Given a message M, 0 < M < n M Zn {0}
use public key (e, n)
compute C = Me mod n C Zn {0}

Decryption
Given a ciphertext C, use private key (d)
Compute Cd mod n = (Me mod n)d mod n =

Med mod n = M

Plaintext: M

C = Me mod (n=pq)

Ciphertext: C

Cd mod n

From n, difficult to figure out p,q

From (n,e), difficult to figure d.

From (n,e) and C, difficult to figure out M s.t. C = Me

RSA Example

• p = 11, q = 7, n = 77, (n) = 60

• d = 13, e = 37 (ed = 481; ed mod 60 = 1)

• Let M = 15. Then C Me mod n

– C 1537 (mod 77) = 71

• M Cd mod n

– M 7113 (mod 77) = 15

RSA Example 2

• Parameters:

– p = 3, q = 5, q= pq = 15

– (n) = ?

• Let e = 3, what is d?

• Given M=2, what is C?

• How to decrypt?

RSA Security
• Security depends on the difficulty of factoring n

– Factor n => (n) => compute d from (e, (n))

• The length of n=pq reflects the strength
– 700-bit n factored in 2007

– 768 bit factored in 2009

• 1024 bit for minimal level of security today
– likely to be breakable in near future

• Minimal 2048 bits recommended for current usage

• NIST suggests 15360-bit RSA keys are equivalent in strength to
256-bit

• RSA speed is quadratic in key length

Real World Usage of Public Key
Encryption

• Often used to encrypt a symmetric key
– To encrypt a message M under a public key (n,e), generate a new AES

key K, compute [RSA(n,e,K), AES(K,M)]

• Plain RSA does not satisfy IND requirement.
– How to break it?

• One often needs padding, e.g., Optimal Asymmetric
Encryption Padding (OAEP)
– Roughly, to encrypt M, chooses random r, encode M as

 M’ = [X = M H1(r) , Y= r H2(X)] where H1 and
H2 are cryptographic hash functions, then encrypt it as (M’) e mod n

– Note that given M’=[X,Y], r = Y H2(X), and M = X H1(r)

Digital Signatures: The Problem

• Consider the real-life example where a person pays by credit
card and signs a bill; the seller verifies that the signature on
the bill is the same with the signature on the card

• Contracts, they are valid if they are signed.

• Signatures provide non-repudiation.
– ensuring that a party in a dispute cannot repudiate, or refute the

validity of a statement or contract.

• Can we have a similar service in the electronic world?
– Does Message Authentication Code provide non-repudiation? Why?

Digital Signatures

• MAC: One party generates MAC, one party verifies integrity.

• Digital signatures: One party generates signature, many
parties can verify.

• Digital Signature: a data string which associates a message
with some originating entity.

• Digital Signature Scheme:
– a signing algorithm: takes a message and a (private) signing key,

outputs a signature

– a verification algorithm: takes a (public) key verification key, a
message, and a signature

• Provides:
– Authentication, Data integrity, Non-Repudiation

Digital Signatures and Hash

• Very often digital signatures are used
with hash functions, hash of a message is
signed, instead of the message.

• Hash function must be:
– Pre-image resistant

– Weak collision resistant

– Strong collision resistant

RSA Signatures

Key generation (as in RSA encryption):

• Select 2 large prime numbers of about the

 same size, p and q

• Compute n = pq, and = (q - 1)(p - 1)

• Select a random integer e, 1 < e < , s.t.

 gcd(e,) = 1

• Compute d, 1 < d < s.t. ed 1 mod

Public key: (e, n) used for verification

Secret key: d, used for generation

RSA Signatures (cont.)
Signing message M

• Verify 0 < M < n

• Compute S = Md mod n

Verifying signature S

• Use public key (e, n)

• Compute Se mod n = (Md mod n)e mod n = M

Note: in practice, a hash of the message is signed

and not the message itself.

